Data collection	
Stoe Siemens AED 2 diffractometer $\omega - \theta$ scans Absorption correction: by integration from crystal shape $T_{min} = 0.29, T_{max} = 0.66$ 654 measured reflections 250 independent reflections 198 observed reflections $[I > 5\sigma(I)]$	$R_{int} = 0.034$ $\theta_{max} = 29.9^{\circ}$ $h = -1 \rightarrow 13$ $k = -1 \rightarrow 13$ $l = -1 \rightarrow 9$ 3 standard reflections frequency: 360 min intensity variation: 2.0%
Refinement	
Refinement on <i>F</i> R = 0.024 wR = 0.030 S = 1.27	$\begin{array}{l} \Delta \rho_{\rm max} = 0.6 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -1.0 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Extinction \ correction: \ none} \\ {\rm Atomic \ scattering \ factors} \end{array}$

S = 1.27Atomic scattering factors198 reflectionsfrom International Tables29 parametersfor X-ray Crystallography $w = 1/[\sigma^2(F) + 0.0007F^2]$ (1974, Vol. IV) $(\Delta/\sigma)_{max} = 0.004$ for X-ray Crystallography

 Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for (II)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
Sr	0	1/2	0	0.0103 (4)
Ca	0	1/2	0	0.0103 (4)
Cu	0.3859(1)	x	0.2267 (2)	0.0134 (3)
O(1)	0.1720 (4)	0.3549 (4)	0.2419 (12)	0.0138 (10)
O(2)	0.0986 (5)	x	0.2785 (19)	0.031 (3)
В	0.2053 (6)	х	0.256 (2)	0.0127 (19)

Table 4. Selected ge	ometric parameters	(A,	*) fo)r (11)
----------------------	--------------------	-----	-------	---------

Sr—O(1) × Sr—O(1) × Cu—O(1) × Cu—O(2) ×	< 4 < 4 < 2 < 2	2.565 (6) 2.631 (6) 1.940 (4) 1.913 (5)	Cu—O(2) B—O(1) × 2 B—O(2)	2	2.938 (12) 1.378 (7) 1.361 (7)
O(1)—Cu—O(1 O(1)—Cu—O(2 O(2)—Cu—O(2	1) 2) × 2 2)	73.45 (15) 102.43 (17) 81.64 (19)	O(2)—Cu—O(2) O(1)—B—O(2) O(1)—B—O(1 ⁱ)	× 2 × 2	86.1 (4) 122.7 (5) 114.6 (4)
		Symmetry co	de: (i) y, x, z .		

The structural refinement was performed with the SHELX76 program package (Sheldrick, 1976). The program ATOMS (Dowty, 1989) was used to obtain the structure diagram. Cell parameters were obtained from scanned Guinier X-ray powder photographs, using Cu $K\alpha_1$ radiation with silicon as an internal standard. Data were collected at room temperature and corrected for background, Lorentz and polarization effects.

The synthetic and structural investigations on metal borates are financially supported by the Swedish Natural Science Research Council.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1074). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Dowty, E. (1989). ATOMS. A Computer Program for Displaying Atomic Structures. E. Dowty, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Norrestam, R., Carlson, S., Kritikos, M. & Sjödin, A. (1994). J. Solid State Chem. In the press.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Göttingen, Germany.
- Smith, R. W. & Keszler, D. A. (1991). J. Solid State Chem. 93, 430– 435.

Acta Cryst. (1994). C50, 1849-1852

Octasodium Hydrogen Decatungstogadolinate Triacontahydrate

Toshihiro Yamase, Tomoji Ozeki and Minoru Tosaka

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 227, Japan

(Received 23 May 1994; accepted 14 July 1994)

Abstract

The decatungstogadolinate anion in the title compound, Na₈H[GdW₁₀O₃₆].30H₂O, has approximately D_{4d} symmetry, with Gd—O and W—O distances of 2.39 (2)–2.42 (2) Å and 1.69 (2)–2.34 (2) Å, respectively.

Comment

In our survey of the structures of decatungstolanthanoate anions (Ozeki, Takahashi & Yamase, 1992; Ozeki & Yamase, 1993, 1994*a*,*b*; Sugeta & Yamase, 1993; Yamase, Ozeki & Ueda, 1993; Yamase & Ozeki, 1993), the lanthanide atoms of the $[LnW_{10}O_{36}]^{9-}$ (Ln = Pr, Nd, Sm, Gd, Tb, Dy) anions in their tripotassium tetrasodium salts were found to deform to $C_{4\nu}$ symmetry from their highest possible symmetry of D_{4d} . This structural distortion originates from the attachment of the K⁺ cations to the LnO₈ square antiprism in the $[LnW_{10}O_{36}]^{9-}$ anion (Ozeki & Yamase, 1994*a*). We report here the structure of the title compound, (1), and compare it with that of K₃Na₄H₂[GdW₁₀O₃₆].21H₂O, (2) (Yamase & Ozeki, 1993) to illustrate the effect of crystal packing on the structures of the decatungstolanthanoate anions.

As shown in Fig. 1, the decatungstogadolinate anion in compound (1) possesses the same metal-oxygen framework structure as found in compound (2). Unlike the $[GdW_{10}O_{36}]^{9-}$ anion in (2), where the Gd— W distances are asymmetric for the two $[W_5O_{18}]^{6-}$ moieties (Yamase & Ozeki, 1993), the Gd ··· W separations for the two $[W_5O_{18}]^{6-}$ groups in (1) display similar distances: 3.800-3.825 Å [average 3.81 (1) Å] for W1-W4 and 3.795-3.835 Å [average 3.82 (2) Å] for W6-W9. This is because no cationic groups attach to the O atoms in the GdO_8 square antiprism in (1). The Gd—O distances in the title compound are in the range 2.39–2.42 Å [average 2.41 (2) Å], which is slightly shorter than the corresponding distances of 2.37-2.49 Å [average 2.43 (2) Å] found in (2), although the difference is not significant when compared with the standard deviations. The Gd-W distances in (1), which range from 3.795 to 3.835 Å [average 3.81 (1) Å], are also shorter than those in (2), 3.812-3.875 Å [average 3.84(1)Å]. A similar trend was observed when comparing the structures of the decatungstosamarate anions in Na₆H₃[SmW₁₀O₃₆].28H₂O (Ozeki & Yamase, 1994b) and K₃Na₄H₂[SmW₁₀O₃₆].22H₂O (Ozeki & Yamase, 1993). These differences originate in the crystal packing of the compounds. The O atoms coordinating to the lanthanide atoms in the tripotassium tetrasodium salts also coordinate to the K⁺ cations in their vicinity. Thus, the electron density at these O atoms is reduced, which results in the elongation of the Ln–O distances in these salts.

Fig. 2 shows the packing diagram of compound (1). Of the ten independent Na^+ cations, Na8-Na10 showed large displacement parameters. Therefore, the

001

Q61'

065

021

ึพห

W5035

Ó51

046

O50

531

023 022

O26 Na9

03

048

0047

036 0<u>49</u>

044

Na10 O59^{iv}

037

b026

044

040 043

0042

-0039

041

Na2

010

015 0

D19

O2(

025W

ന്24

O58ⁱⁱ

<u>06</u>2

056

055

058

O3

O59 O53

054

O32

Fig. 1. ORTEPII (Johnson, 1976) drawing of the decatungstogadolinate anion in compound (1). Displacement ellipsoids are shown at 50% probability levels. Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) 1 - x, -1 - y, 1 - z; (iii) 2 - x, -y, -z; (iv) x, y, 1 + z. site-occupation factors for these atoms were refined and converged to values between 0.5 and 0.7. In the final refinement, these values were fixed at 0.5. The disordered Na⁺ cations have four or five O atoms in their coordination sphere with Na—O distances of 2.11-2.66 Å, while all the other Na⁺ cations achieve octahedral coordination with Na—O distances of 2.33– 2.57 Å.

Fig. 2. Packing diagram of compound (1) viewed down the c^* axis. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, 1 + y, z; (iii) 1 - x, -y, 1 - z.

Experimental

8.3 g of Na₂WO₄.2H₂O dissolved in 20 ml of aqueous solution was acidified with CH₃COOH to pH 7.3 and heated to 353 K. 1.15 g of GdNO₃.4H₂O in 2 ml of H₂O was added dropwise and the mixture kept at elevated temperature until the white precipitate dissolved. 0.1 g of NaCl powder was added to the solution. Colourless hexagonal prismatic crystals were obtained after keeping the solution at 277 K for 12 h. The crystals were very efflorescent and all the diffraction measurements were performed at 150 K to minimize the decay of the diffraction intensities.

T. YAMASE, T. OZEKI AND M. TOSAKA

Crustald	ata				01	0.747(1)	0 828 (2)	1 078 (2)	0.026 (5)
Crystat a	aia				02	0.7993 (8)	0.725(1)	0.881(1)	0.009 (3)
Na ₈ H[Gd	IW10O36].30H	I ₂ O M	lo $K\alpha$ radiation		03	0.6730 (9)	0.748(1)	0.891 (1)	0.011 (4)
$M_{*} = 334$	54 2	- λ	= 0.71069 Å		04	0.6955 (9)	0.638(1)	1.048(1)	0.013 (4)
Triclinic		Ĉ	ell narameters fi	rom 25	O5	0.8212 (9)	0.620(1)	1.036(1)	0.015 (4)
		C		0m 25	O6	0.8639 (9)	0.650(1)	0.684 (1)	0.010 (3)
P1		0	renections		07	0.5868 (9)	0.698 (1)	0.708 (1)	0.011 (4)
a = 20.90	J8 (8) Å	θ	$= 10.0 - 12.5^{\circ}$		O8	0.6344 (10)	0.466(1)	1.049 (2)	0.019 (4)
b = 13.08	88 (4) A	μ	$= 18.27 \text{ mm}^{-1}$		09	0.9092 (9)	0.422(1)	1.027 (1)	0.015 (4)
c = 12.88	34 (4) Å	Т	= 150 K		010	0.7262 (9)	0.666(1)	0.706(1)	0.011 (4)
$\alpha = 102$	65 (2)°	н	exagonal prism		011	0.6186 (9)	0.579(1)	0.875(1)	0.010(3)
B = 05.0	$4(3)^{\circ}$	0	$20 \times 0.20 \times 0$	20 mm	012	0.7716(8)	0.448(1)	1.022(1)	0.005(3)
p = 73.9	5 (2) ⁰	0. C	$20 \times 0.20 \times 0.$	20 11111	013	0.8800(9)	0.555(1)	0.853(1)	0.011(4)
$\gamma = 77.0.$	(3)	C	olouriess		014	0.7482 (8)	0.333(1) 0.475(1)	0.805(1)	0.005(3)
V = 3347	$(2) A^{3}$				015	0.6688 (8)	0.475(1)	0.674(1)	0.005(3)
Z = 2	•				017	0.6917 (8)	0.381(1)	0.857(1)	0.009 (3)
$D_x = 3.32$	3 Mg m ⁻³				018	0.8331 (8)	0.359(1)	0.845(1)	0.008 (3)
					019	0.8510 (8)	0.245(1)	0.612(1)	0.007 (3)
D					O20	0.7273 (9)	0.344(1)	0.510(1)	0.010 (3)
Data coll	lection				O21	0.6549 (8)	0.267(1)	0.646(1)	0.003 (3)
Rigaku A	FC-5S diffra	ctome- 10	351 observed	reflections	022	0.7765 (8)	0.167 (1)	0.744 (1)	0.007 (3)
ter			$[I > 3\sigma(I)]$		O23	0.7530 (9)	0.132 (1)	0.521 (1)	0.009 (3)
100 000	n 0	۵	- 27 5°		024	0.9425 (9)	0.107 (1)	0.478 (1)	0.011 (4)
$\omega/20$ sca		<i>U</i> 1	nax = 27.3		025	0.7011 (9)	0.310(1)	0.293 (1)	0.014 (4)
Absorptio	on correction	: n	$= -27 \rightarrow 20$		026	0.5613 (9)	0.146(1)	0.555(1)	0.010 (3)
empiri	cal DIFABS (Walker k	$= -17 \rightarrow 16$		027	0.8045 (8)	-0.047(1)	0.748(1)	0.009 (3)
& Ŝtua	art. 1983).	1:	$= 0 \rightarrow 16$		028	0.8198 (8)	0.205(1)	0.398(1)	0.006(3)
<i>T</i> =	0 747 T	= 3	standard reflecti	ons	029	0.6388 (9)	0.225(1)	0.434(1)	0.015(4)
1 mm –	0.747, 1 max	- 5	monitored aver	v 100	030	0.0800(8)	0.038(1)	0.643(1)	0.003(3)
1.304	1 0		monitored ever	y 100	031	0.8033(9)	0.037(1)	0.009(1)	0.011(4)
16 024 n	neasured refle	ections	reflections		032	0.8417(8) 0.7304(0)	0.000(1)	0.401(1) 0.315(1)	0.007(3)
15 341 ii	ndependent		intensity variati	on: -2.8%	034	0.6652 (9)	0.000(1)	0.313(1) 0.434(1)	0.011(3)
reflecti	ions				035	0.7766 (8)	-0.073(1)	0.520(1)	0.007(3)
					036	0.7555 (9)	-0.134(1)	0.297(1)	0.013 (4)
D C					037	0.562(1)	-0.066(2)	0.642 (2)	0.040 (6)
Refineme	nt				038	0.582(1)	-0.122(2)	0.382 (2)	0.024 (5)
Refineme	ent on F	(/	$\sqrt{\sigma}_{max} = 0.05$		039	0.5755 (9)	-0.554(1)	0.525(1)	0.015 (4)
P = 0.06	5	λ.	-732 e^{1}	-3	O40	0.452(1)	-0.405 (2)	0.247 (2)	0.025 (5)
K = 0.00	5		$p_{\text{max}} = 7.52 \text{ C} R$	Å −3	041	0.541 (2)	-0.662 (3)	0.290 (3)	0.075 (10)
WK = 0.0	000		$\rho_{\rm min} = -4.21 \text{ e}$	A	042	0.5474 (9)	-0.310(1)	0.487 (1)	0.016 (4)
S = 1.72		A	tomic scattering	factors	043	0.617(1)	-0.472 (2)	0.286 (2)	0.047 (7)
10 351 re	eflections		from Internatio	nal Tables	044	0.683(1)	-0.195 (2)	0.561 (2)	0.026 (5)
436 para	meters		for X-ray Cryst	allography	045	0.7150 (8)	-0.445(1)	0.481(1) 0.274(1)	0.007(3)
H atoms	not located		(1974, Vol. IV)		040	0.7250(8)	-0.555(1)	0.274(1) 0.221(1)	0.007(3)
$w = 1/f_{\sigma}$	$^{2}(F) \pm 0.000$	F^2	(,		047	0.7870 (9)	-0.595(1) -0.584(1)	0.221(1) 0.472(1)	0.010(3)
w = 1/[0]	(I') + 0.000				049	0.8462(9)	-0.300(1)	0.475(1)	0.009 (3)
					050	0.9164 (9)	-0.508(1)	0.269(1)	0.014 (4)
T-1-1-1	Enastional	atomio oco	udinates and i	cotronic or	051	1.0089 (10)	-0.397(1)	0.506 (1)	0.017 (4)
Table 1.	Fractional	atomic coc	orainales ana i	souropic or	O52	0.8726 (10)	-0.274(1)	0.218(1)	0.017 (4)
equiv	valent isotro	pic displace	ement paramet	ers (A ²)	O53	0.9522 (9)	-0.162(1)	0.385(1)	0.011 (4)
-		•			054	1.0393 (9)	-0.353 (1)	0.273 (1)	0.015 (4)
$U_{\rm iso}$ for	Na8, 9, 10, O	$n; U_{eq} = (1/3)$	$\sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j$	for others.	055	0.958(1)	-0.307 (2)	0.010 (2)	0.028 (5)
					056	1.070(1)	-0.170(2)	0.171 (2)	0.037 (6)
11/0	X 0.74712 (6)	y	Z	$U_{\rm iso}/U_{\rm eq}$	057	0.916(1)	-0.027(2)	0.204 (2)	0.022 (4)
WU	0.74713(5)	0.71133(7)	0.98307 (8)	0.0100	058	0.883(1)	-0.108(2)	-0.080(2)	0.024 (5)
W1	0.81301 (3)	0.00190(7)	0.75571(7)	0.0065	059	0.762(1)	0.031(2)	0.108(2)	0.029(3)
W2 W3	0.03042(5) 0.68280(5)	0.49598 (7)	0.96201 (7)	0.0074	061	0.879(1) 0.794(1)	0.213(1) 0.183(2)	-0.038(2)	0.021(4)
W4	0.84227(5)	0.46784 (7)	0.94893 (7)	0.0060	062	0.754(1) 0.961(2)	0.088(3)	0.003 (3)	0.069 (9)
W5	0.75413 (5)	-0.02013(7)	0.39513 (8)	0.0064	063	1.012(1)	0.307 (2)	0.286(2)	0.025 (5)
W6	0.86275 (5)	0.12944 (7)	0.50721 (8)	0.0057	064	1.019 (2)	0.068 (3)	0.294 (3)	0.10(1)
W 7	0.72360 (5)	0.24120 (7)	0.39807 (7)	0.0045	O65	0.648 (2)	0.195 (2)	0.865 (2)	0.059 (8)
W8	0.64305 (5)	0.14976 (7)	0.55037 (8)	0.0058	O66	0.6900 (10)	-0.056(1)	0.848 (2)	0.020 (4)
W9	0.78216 (5)	0.03723 (7)	0.65804 (8)	0.0066					
Gd	0.75219 (6)	0.34159 (8)	0.69793 (9)	0.0047		t	Occupation f	factor $= 0.5$.	
Na1	1/2	0	1/2	0.0187			-		•
Na2	0.5255 (6)	-0.4752 (8)	0.3814 (9)	0.0201	Т	able 2. Sel	ected geom	etric paramete	rs (Å)
Na3	0.6417 (5)	-0.3086 (8)	0.3991 (8)	0.0125	<u></u>		2 925 (2)	W2 04	201/2
INA4	0.80/2(5)	-0.4548 (8)	U.3011 (8)	0.0120			3,800 (2)	W3_014	2.01 (2)
Naj N-4	0.9423 (3)	-0.340/(/)	0.3039 (8)	0.0089	Gd W2		3 803 (2)	W4_00	1 71 (2)
INZO Na7	0.90/2(0)	-0.2133 (8)	0.1914 (0)	0.0157	GdW/		3 812 (2)	W4-018	1.76 (2)
Na8+	0.0027(0)	0.0572(8) 0.171(2)	0 146 (2)	0.029 (6)	GdW7		3.829 (2)	W4-012	1.92 (2)
NaQ+	0.595(1)	0.061(2)	0.774 (2)	0.021 (5)	GdW6		3,795 (2)	W4-013	1.95 (2)
NalOt	0.692 (1)	0.097 (2)	0.978 (2)	0.012 (4)	Gd···₩8		3.835 (2)	W4—O5	2.04 (2)
		· - · · · · · · /	·-/	• •					

1851

Gd···W9	3.818 (2)	W4014	2.34 (2)
Gd015	2.39 (2)	W5036	1.73 (2)
Gd016	2.39 (2)	W5—O35	1.87 (2)
Gd-017	2.42 (2)	W5	1.90 (2)
Gd-018	2.41 (2)	W5—033	1.90 (2)
Gd-019	2.40 (2)	W5—O34	1.90 (2)
Gd020	2.42 (2)	W5—023	2.27 (2)
Gd021	2.42 (2)	W6	1.69 (2)
Gd-022	2.42 (2)	W6019	1.78 (2)
W0-01	1.72 (2)	W6	1.93 (2)
W0-02	1.87 (2)	W6031	1.96 (2)
W0-05	1.89 (2)	W6032	2.04 (2)
W0-03	1.90 (2)	W6	2.31 (2)
W0-04	1.93 (2)	W7—O25	1.75 (2)
W0-014	2.31 (1)	W7—O20	1.76 (2)
W106	1.73 (2)	W7—O29	1.94 (2)
W1015	1.79 (1)	W7	1.96 (2)
W1013	1.96 (2)	W7—O33	2.02 (2)
W1-010	1.97 (2)	W7—O23	2.31 (2)
W1	2.01 (2)	W8	1.73 (2)
W1014	2.34 (2)	W8	1.79 (1)
W2-07	1.74 (2)	W8	1.89 (2)
W2016	1.79(1)	W8	1.96 (2)
W2011	1.94 (2)	W8—O34	2.03 (2)
W2-010	1.94 (2)	W8	2.32 (2)
W2O3	2.02 (2)	W9—O27	1.73 (2)
W2-014	2.31 (2)	W9	1.80 (2)
W3	1.75 (2)	W9-031	1.91 (2)
W3-017	1.77 (2)	W9	1.96 (2)
W3011	1.95 (2)	W9—O35	2.04 (2)
W3-012	1.95 (2)	W9—O23	2.33 (2)

Data collection: *RCRYSTAN* (Rigaku Corporation, 1985). Data reduction: *TEXSAN PROCESS* (Molecular Structure Corporation, 1989). Program(s) used to solve structure: *MITHRIL* (Gilmore, 1984). Program(s) used to refine structure: *TEXSAN LS*. Molecular graphics: *ORTEPII* (Johnson, 1976).

The present work was supported by a Grant-in-Aid for Scientific Research on Priority Areas 'New Development of Rare Earth Complexes' No. 06241104 from the Ministry of Education, Science and Culture.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: AS1132). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Gilmore, G. J. (1984). J. Appl. Cryst. 17, 42-46.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Molecular Structure Corporation. (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ozeki, T., Takahashi, M. & Yamase, T. (1992). Acta Cryst. C48, 1370-1374.
- Ozeki, T. & Yamase, T. (1993). Acta Cryst. C49, 1574-1577.
- Ozeki, T. & Yamase, T. (1994a). Acta Cryst. B50, 128-134.
- Ozeki, T. & Yamase, T. (1994b). Acta Cryst. C50, 327-330.
- Rigaku Corporation (1985). RCRYSTAN. X-ray Analysis Program System. Rigaku Corporation, Tokyo, Japan.

Sugeta, M. & Yamase, T. (1993). Bull. Chem. Soc. Jpn, 66, 444-449.

- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.
- Yamase, T. & Ozeki, T. (1993). Acta Cryst. C49, 1577-1580.
- Yamase, T., Ozeki, T. & Ueda, K. (1993). Acta Cryst. C49, 1572-1574.

©1994 International Union of Crystallography Printed in Great Britain – all rights reserved Acta Cryst. (1994). C50, 1852-1854

An Mo^v Monophosphate, Rb₂Mo₂P₂O₁₁

A. GUESDON, A. LECLAIRE, M. M. BOREL, A. GRANDIN AND B. RAVEAU

Laboratoire CRISMAT-ISMRA, Université de Caen, Bd du Maréchal Juin, 14050 Caen CEDEX, France

(Received 7 February 1994; accepted 8 June 1994)

Abstract

Molybdenum rubidium phosphate, $Rb_2Mo_2P_2O_{11}$, has been synthesized and the growth of single crystals allowed its structure to be determined. This compound is isotypic with $Tl_2Mo_2P_2O_{11}$ and $K_2Mo_2P_2O_{13}$, and contains a framework built from $Mo_2P_2O_{15}$ units formed by one Mo_2O_{11} group sharing four of its corners with two PO_4 tetrahedra, leading to $[Mo_2P_2O_{13}]_{\infty}$ chains running along c, or to $[Mo_2P_2O_{13}]_{\infty}$ double layers. The $[Mo_2P_2O_{11}]_{\infty}$ framework forms two different intersecting tunnels along [001] and $\langle 110 \rangle$ where the Rb^+ ions are located. Although different from $Rb_{1.5}Mo_2P_2O_{11}$, the two structures exhibit some close relationships.

Comment

The synthesis and determination of the structure of the title compound were undertaken in order to test the possibility of replacing potassium by rubidium in the phase K₂Mo₂P₂O₁₁ (Gueho, Borel, Grandin, Leclaire & Raveau, 1993). The replacement of K⁺ by Cs^+ was only partial and led to $Cs_{1.5}Mo_2P_2O_{11}$ with the same framework structure (Borel, Leclaire, Grandin & Raveau, 1994), whereas the replacement of K^+ by Tl^+ was complete (Guesdon, Borel, Grandin, Leclaire & Raveau, 1993). Attempts to substitute rubidium for potassium allowed $Rb_2Mo_2P_2O_{11}$ to be prepared in the form of a microcrystalline powder (Gueho et al., 1993), but the first single crystals that were obtained were those of the monophosphate Rb_{1.5}Mo₂P₂O₁₁ (Borel, Leclaire, Guesdon, Grandin & Raveau, 1994) with a structure which, in contrast to Cs_{1.5}Mo₂P₂O₁₁, was different to that of $K_2Mo_2P_2O_{11}$. In the present work, single crystals of Rb₂Mo₂P₂O₁₁ were synthesized as a minor phase from a batch of nominal composition Rb₆Mo₇P₂O₃₇ heated at 923 K for one day in an evacuated silica ampoule and cooled at $2 \text{ K} \text{ h}^{-1}$ to 823 K. The sample was then quenched to room temperature and reddish purple crystals were extracted.

 $Rb_2Mo_2P_2O_{11}$ is isotypic with the 'K₂', 'Cs_{1.5}' and 'Tl₂' phases; its framework is built from $Mo_2P_2O_{15}$ units formed by one Mo_2O_{11} group sharing four of